EXAMINATION REPORT FOR ELECTRIC LIFTS (FOR TAKEOVER MAINTENANCE)

1. Basic Information and Description of Installation
 Location (Address) ____________________________
 Lift No.__________ Lift Location ID____________ Date of Handover_____________
 Brand_____________ Model______________
 Passenger Lift [] Freight Lift [] Industrial Truck Loaded Freight Lift [] Vehicle Lift []
 Vertical Lifting Platform [] Stairlift [] Mechanized Vehicle Parking System []
 Length of Travel______m

2. Static Examination – Mechanical
 2.1 Suspension
 (a) Suspension Ropes/ Belts
 Number__________ Nominal Diameter/ Width__________mm
 Have the suspension ropes attained the criteria for replacement in accordance with Clause 5.4.8 of the Works Code? Yes [] No []
 (b) Type of Anchorages: Car____________________
 Counterweight____________________
 * Rope/ Chain
 Number: _________ Size: __________
 Have the anchorages been examined and found in good working condition? Yes [] No []
 2.2 Safety Gear
 Car side: Brand_____________ Model______________
 Counterweight side, if fitted: Brand_____________ Model______________
 2.3 Energy Dissipation Buffer
 (a) Car side: Brand_____________ Model______________ Number__________
 Counterweight side: Brand_____________ Model______________ Number__________
 (b) Is/ Are the buffer switch(es) functioning properly? N.A. [] Yes [] No []

2.4 Energy Accumulation Buffer
 (a) Car side: Brand_____________ Model______________ Number__________
 Counterweight side: Brand_____________ Model______________ Number__________
 (b) Is the buffer's condition satisfactory? (e.g. free from crack/ rust) Yes [] No []

2.5 Brake
 (a) Type: *Drum/ Disc *Single/ Double
 (b) Does the brake stop the lift effectively, when empty car travelling upward in the upper part at rated speed of its travel? Yes [] No []
 (c) Is/ Are the brake monitoring device(s) functioned properly? N.A. [] Yes [] No []

2.6 Overspeed Governor
 Car side: Brand_____________ Model______________
 Counterweight side, Brand_____________ Model______________
 if fitted:
 Governor Rope Nominal Diameter: ____________mm

2.7 Door Locking Device
 (a) Landing: Brand_____________ Model______________
 (b) Car (1): Brand_____________ Model______________
 (c) Car (2): Brand_____________ Model______________
 (d) Car (3): Brand_____________ Model______________
 (e) Car (4): Brand_____________ Model______________

2.8 Equipped with Ascending Car Overspeed Protection Means/ Function? Yes [] No []
 (a) Overspeed Governor
 (i) Is the Overspeed Governor using the one as mentioned in item 2.6? Yes [] No []
 (ii) Brand_____________ Model______________
 (b) Speed Reducing Element
 (i) Type: Brake on Sheave [] Rope Gripper [] Car Safety Gear (acting upwards) []
 Counterweight Safety Gear (acting downwards) []
 Others (please specify) __________________
 (ii) Brand_____________ Model______________

2.9 Equipped with Unintended Car Movement Protection Means/ Function? Yes [] No []
 (a) Type of Unintended Car Movement Protection Means
 Brake on Sheave [] Rope Gripper [] Car Safety Gear []
 Counterweight Safety Gear []
 (b) Brand_____________ Model______________

3. Static Examination – Electrical
 3.1 Insulation Resistance to Earth
 (a) Lift Motor__________MΩ
 (b) MG Set (if fitted): Motor__________MΩ Generator__________MΩ

* Delete whichever is not applicable
EXAMINATION REPORT FOR ELECTRIC LIFTS (FOR TAKEOVER MAINTENANCE)

3.2 Earthing
(a) Is the maximum continuity resistance to earth less than 0.5 Ω? Yes □ No □
(b) Is the car connected to controller earthing terminal by a separate conductor with proper sizing? Yes □ No □

3.3 Protection of Conductors
Is the fixed wiring in conduit or trunking (or fittings which ensure equivalent protection) throughout? Yes □ No □

3.4 Phase Reversal and Phase Failure Devices
Do the phase reversal and phase failure devices operate/function correctly? Yes □ No □

4. Dynamic Tests
4.1 Safety Contacts/Circuits
(a) Have the contacts at each landing entrance been proved to ensure that when broken there is no movement of the car? Yes □ No □
(b) Have the mechanical locks at each landing entrance been proved for positive locking? Yes □ No □
(c) Have the car door/gate contacts been proved so that when broken there is no movement of the car? Yes □ No □
(d) If separate terminal stopping switches are fitted, do they operate satisfactorily? Yes □ No □
(e) Do the final limit switches cut off the motor supply before the car or counterweight contact the buffers? Yes □ No □
(f) Have the stopping devices on the car top, in the pulley room and pit, been proved so that when broken no movement of the car occurs? Yes □ No □
(g) Have all other switches/contacts in the safety circuit been proved so that when broken no movement of the car occurs? Yes □ No □
(h) Does the earthing of the most remote contact (lock or push button) operate a fuse or trip a breaker without delay? Yes □ No □
(i) Other electromechanical interlocks? Yes □ No □
(j) Are the interlocks mentioned in (i) working properly? Yes □ No □

4.2 Car Top Control Station
(a) Speed Up _________ m/s
(b) Speed Down _________ m/s

4.3 Clearances and Runby
(a) With the counterweight on its fully compressed buffers, how much further can the lift car move upwards before it hits any obstruction? _________ mm
(b) What is the distance between the car roof and the lowest parts of roof of the lift well, when the car levels with top floor? _________ mm
(c) With the car resting on its fully compressed buffers, is there a sufficient space as specified in relevant clauses in applicable Design Code? Yes □ No □
(d) Distance of bottom runby of car _________ mm
(e) Distance of bottom runby of counterweight _________ mm

4.4 Door Test
(a) Type of sliding door *Horizontal / Vertical / Swing/ Collapsible
(b) Form of operation of door *Manual / Powered
(c) Power supply to door control circuit _________ V
(d) Maximum force at the mid-point of the travel _________ N
(e) Does the function of the door re-opening device work properly? Yes □ No □
(f) Do the car doors fulfil the requirements of relevant clauses in applicable Design Code? Yes □ No □

5. Overcurrent protection devices

6. Overspeed Governor Tests
6.1 Car Governor
Governor Type___________ Electrical Mechanical
Device Tripping Marked m/s m/s
Speed Measured m/s m/s
State how the governor on the installation was tested: *Simulation / Free Fall / Actual Overspeed / Others (Specified) _______________

6.2 Counterweight Governor (if fitted)
Governor Type___________ Electrical Mechanical
Device Tripping Marked m/s m/s
Speed Measured m/s m/s

* Delete whichever is not applicable
State how the governor on the installation was tested:
*Simulation / Free Fall / Actual Overspeed / Others (please specify) __________________

Note: The following tests should be conducted with the car descending in inspection speed, with the brake open and the machine continuing to run till the ropes slip or become slack.

7. Car Safety Gear Tests
 7.1 Progressive Type *N.A. / Fitted
 Does the safety gear operate correctly when engaging at levelling or inspection speed with car empty?
 State the speed__________ m/s

 7.2 Instantaneous Type *N.A. / Fitted
 Does the safety gear operate correctly when engaging at levelling or inspection speed with car empty?
 State the speed__________ m/s

 7.3 What was the stopping distance in the test? __________m

8. Counterweight Safety Gear Tests and Counterweight Inspection
 Note: The following tests should be conducted with the counterweight descending, with the brake open and the machine continuing to run till the ropes slip or become slack.

 8.1 Progressive Type *N.A. / Fitted
 Does the safety gear operate correctly when engaging at levelling or inspection speed with the car empty?
 State the speed__________ m/s

 8.2 Instantaneous Type *N.A. / Fitted
 Does the safety gear operate correctly when engaging at levelling or inspection speed with the car empty?
 State the speed__________ m/s

 Note: The following inspection (8.3) is carried out after all dynamic tests have been completed.

 8.3 Counterweight
 Are there any visual defects on the whole counterweight including frame, filler weights, brackets and their fixings?

9. Ascending Car Overspeed Protection Means/ Function Test
 9.1 Overspeed Governor Test
 (a) Car Governor
 Governor Type______________ Electrical Mechanical
 Device Tripping Marked m/s m/s
 Speed (upward) Measured m/s m/s

 (b) Counterweight Governor (if fitted)
 Governor Type______________ Electrical Mechanical
 Device Tripping Marked m/s m/s
 Speed (downward) Measured m/s m/s

State how the governor was tested on the installation:
*Simulation / Actual Overspeed / Others (please specify) __________________

9.2 Speed Reducing Element Test
 The test should be conducted with the car ascending and the brake open (except brake on sheave).
 (a) Does the speed reducing element operate correctly when engaging at preset speed with the car empty?
 State the measured speed__________ m/s
 (b) What was the stopping distance in the test? __________m

10. Unintended Car Movement Protection Means/ Function Tests
 Does Unintended Car Movement Protection device function properly during unintended upward movement of empty car?

11. Buffer Checks
 11.1 For Car Buffers
 (a) Is/ Are the car buffer(s) installed and aligned properly?
 Yes ☐ No ☐
 (b) Is/ Are the car buffer(s) filled with sufficient buffer oil?
 N.A. ☐ Yes ☐ No ☐
 (c) Does/ Do the car buffer(s) recover automatically after operation?
 N.A. ☐ Yes ☐ No ☐

 11.2 For Counterweight Buffers
 (a) Is/ Are the counterweight buffer(s) installed and aligned properly?
 Yes ☐ No ☐
 (b) Is/ Are the counterweight buffer(s) filled with sufficient buffer oil?
 N.A. ☐ Yes ☐ No ☐
 (c) Does/ Do the counterweight buffer(s) recover automatically after operation?
 N.A. ☐ Yes ☐ No ☐

12. Traction Check
 12.1 Does the car stop under emergency conditions with the car empty when travelling upwards at rated speed?
 Yes ☐ No ☐
 12.2 With the counterweight resting on its fully compressed buffers, is it impossible for the empty car to be raised under power?
 Yes ☐ No ☐

* Delete whichever is not applicable
12.3 The wear and tear of traction groove attained criteria for replacement according to manufacturer's instruction? Yes ☐ No ☐

13. Emergency Stopping Distance
What was the stopping distance of the empty car traveling in up direction at rated speed under emergency stopping conditions? __________m

14. General (Lift Works)
(a) Is the maximum load indicated in the car and does it comply with relevant clauses in applicable Design Code? Yes ☐ No ☐
(b) Does the fireman's lift operation function correctly? N.A. ☐ Yes ☐ No ☐
(c) Are the emergency instructions displayed in the machine room? Yes ☐ No ☐
(d) Does the emergency operation system function correctly? Yes ☐ No ☐
(e) Does the emergency lighting of the car and machine room function correctly? Yes ☐ No ☐
(f) What are the emergency alarm devices?

<table>
<thead>
<tr>
<th>Mangt office</th>
<th>M/C room</th>
<th>Lift car</th>
<th>Main lobby/Pit</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. Alarm bell*</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>ii. Intercom*</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>iii. Indication light*</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>iv. Indication light for acknowledgement & the notice*</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

(g) Does the overload device operate satisfactorily? Yes ☐ No ☐
(h) Does the bridging device function correctly? N.A. ☐ Yes ☐ No ☐
(i) Does the anti-finger trapping device function correctly? N.A. ☐ Yes ☐ No ☐
(j) Does the rescue device provided for machine-room-less lift? N.A. ☐ Yes ☐ No ☐

15. General (Other works)
(a) Is the machine room artificial lighting adequate for maintenance purposes? Yes ☐ No ☐
(b) Is the artificial lighting in the lift well or lift pit adequate for maintenance purposes? Yes ☐ No ☐
(c) Are the machine room conditions satisfactory? Yes ☐ No ☐
(d) Are the provisions for ventilating the machine room adequate? Yes ☐ No ☐
(e) Are the machine room doors or trap doors fitted with a suitable lock to comply with Clause 3.15.3 and Clause 3.15.4 of the CoP on Building Works for Lifts and Escalators? Yes ☐ No ☐
(f) Are the safety means of access to all items of equipment in accordance with the Part 1 of the Design Code and the CoP on Building Works for Lifts and Escalators? If no, state details

16. Common Anomalies
(a) Are metal gates or the like installed in front of landing doors of a Firemen's lift blocking the entrances? If yes, state the floor(s)

(b) Are metal gates installed in front of the entrances of a lift, other than a firemen's lift, not provided with the interlock in compliance with the applicable Design Code? If yes, state the floor(s)

(c) Have any landing doors provided at the time of installation of the lift been disabled (i.e. such landings are not served by the lift). If yes, state the floor(s)

(d) Are the landing door locking device not properly adjusted (i.e. the landing door could be opened manually from the landing side when the lift car was not at the unlocking zone of that landing)? If yes, state the floor(s)

(e) Are the safety switch for proving the effective locking of the landing door in the closed position not properly adjusted or not of the positively operated type? If yes, state the floor(s)

(f) Are the safety switch for proving the closed position of the landing door not properly adjusted or not of the positively operated type? If yes, state the floor(s)

(g) Is there any excessive clearance between the landing and car door panels (when closed) or between the landing and car door panel and the upright? If yes, state the floor(s)

* Delete whichever is not applicable
EXAMINATION REPORT FOR ELECTRIC LIFTS (FOR TAKEOVER MAINTENANCE)

(h) Is excessive closing force or kinetic energy of the landing doors or car doors found? □ Yes □ No □ N.A.

(i) Is lubricant leaked from the gearbox of the driving machine affecting the safe operation of the lift? □ Yes □ No □ N.A.

(j) Are the suspension wire ropes not in safe working order (such as serious rusting or corrosion, excessive breakage of wires or other serious abnormalities)? □ Yes □ No □ N.A.

(k) Is the brake of the driving machine not properly adjusted or the brake lining excessively worn out affecting its safe operation? Yes □ No □ □ N.A.

(l) Is the accessible moving part of the lift machinery inside the machine room not protected against injury to persons? □ Yes □ No □ □ N.A.

(m) Is the lift car body or the car sling seriously corroded or rusted? □ Yes □ No □ □ N.A.

(n) Is the guard rail on lift car top not properly installed? □ Yes □ No □ □ N.A.

(o) Is the overload sensing device not of a fail-safe type? □ Yes □ No □ □ N.A.

17. Declaration

17.1 Declaration by Registered Lift Worker or Registered Lift Engineer

I declared that on ________________ the examination works as stated in this report had been done and the information in this examination report is an accurate record.

______________________________ ______________________________
Name & Registration No. of Signature
Registered Lift Worker

______________________________ ______________________________
Name & Registration No. of Signature
Registered Lift Engineer

17.2 Declaration by Registered Lift Contractor

☐ We declared that the examination works as stated in this report had been done by our staff. Maintenance defect(s) which may affect safe operation of lift had been identified as listed below. The lift was suspended from operation after examination works.

Note: Please tick where appropriate.

<table>
<thead>
<tr>
<th>Item</th>
<th>Maintenance defect(s)</th>
<th>Affecting safe operation of lift? (YN)</th>
<th>Anticipated rectification completion date (dd/mm/yyyy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Please use additional sheet(s) if the above spaces are not enough.

______________________________ ______________
Name & Registration No. of Authorized Signature of Registered
Registered Lift Contractor Lift Contractor with Company Chop

Date

* Delete whichever is not applicable
電動升降機的檢驗報告（適用於接管保養）

1. 裝置詳情

地點(地址): __________________________

升降機編號: _____________________ 升降機識別編號: ___________________ 交接日期: ____________

(a) 製造商: ___________ 型號: ___________ 行程距離: ___________ 米
(b) 機房位置: __________________________
(c) 平層公差: ±____________
(d) 測試時電源: 伏特 ___________ 毫米 ___________ 銅兹 ___________
(e) 地點: __________________________

2. 靜態檢驗 – 機械

2.1 懸吊工具

(a) 懸吊纜索：單位 ___________ 頭數 ___________

(b) 編織頭的類型: 型號 ___________

(c) 補償裝置類型: 型號 ___________ 數量 ___________

2.2 安全鉗

機廂: 型號 ___________ 型號 ___________

對重裝置(如有): 型號 ___________ 型號 ___________

2.3 蓄能式緩衝器

(a) 機廂: 型號 ___________ 型號 ___________

(b) 對重裝置: 型號 ___________ 型號 ___________

2.4 蓄能式緩衝器

(a) 機廂: 型號 ___________ 型號 ___________

(b) 對重裝置: 型號 ___________ 型號 ___________

2.5 制動器

(a) 類型: 單/雙

(b) 當升降機在正常的上行向上以額定速度行駛時急停

(c) 儀制動器(如有): 型號 ___________

2.6 限速器

(a) 限速器: 型號 ___________

(b) 外門: 型號 ___________

(c) 外門: 型號 ___________

2.7 門鎖裝置

(a) 門鎖: 型號 ___________

(b) 補償裝置(如有): 型號 ___________

2.8 是否設有升降機吊網限速保護措施？

(a) 是 □ 否 □

(b) 是 □ 否 □

2.9 機廂非預定移動保護裝置

(a) 機廂非預定移動保護裝置類型: 型號 ___________

(b) 機廂非預定移動保護裝置類型: 型號 ___________

(c) 機廂非預定移動保護裝置類型: 型號 ___________

(d) 機廂非預定移動保護裝置類型: 型號 ___________

(e) 是 □ 否 □

(f) 是 □ 否 □

3. 靜態檢驗 – 電氣

3.1 對地絕緣電阻值

(a) 升降機發動機 ___________ 兆伏

(b) 電動發電機組 (如有裝設) : 型號 ___________ 兆伏

(c) 電動發電機組 (如有裝設) : 型號 ___________ 兆伏

(d) 電動發電機組 (如有裝設) : 型號 ___________ 兆伏

(e) 電動發電機組 (如有裝設) : 型號 ___________ 兆伏

(f) 是 □ 否 □

(g) 是 □ 否 □

(h) 是 □ 否 □

(i) 是 □ 否 □

(j) 是 □ 否 □

(k) 是 □ 否 □

(l) 是 □ 否 □

(m) 是 □ 否 □

(n) 是 □ 否 □

(o) 是 □ 否 □

(p) 是 □ 否 □

(q) 是 □ 否 □

(r) 是 □ 否 □

(s) 是 □ 否 □

(t) 是 □ 否 □

(u) 是 □ 否 □

(v) 是 □ 否 □

(w) 是 □ 否 □

(x) 是 □ 否 □

(y) 是 □ 否 □

(z) 是 □ 否 □

* 將去不適用者
電動升降機的檢驗報告（適用於接管保養）

3.2 接地
(a) 對地最高連繫性電阻，是否低於 0.5 欧？
(b) 機箱是否由一獨立的導體以適當的尺寸連接到
控制器的接地終端？

3.3 導體的保護
固定的佈線是否全部在導管或線槽（或其他確保具
同樣保護效能的配件）內？

3.4 反相及斷相保護裝置
反相及斷相保護裝置是否操作正常？

4. 動態測試
4.1 安全接點/電路
(a) 每個層站入口的接點是否經測試證明在斷路時，機廂不會移動？
(b) 每個層站入口的機械鎖是否經測試證明，可肯定鎖緊？
(c) 機廂門開接點是否經測試在斷路時，機廂不會移動？
(d) 如果裝置了獨立終端制動開關掣，開關掣的運作是否符合要求？
(e) 在機廂或對重接觸緩衝器之前，最終限位開關是否能切斷電動機的電源？
(f) 在機廂頂部，滑輪房和井道底坑的緊急停止開關，是否經測試證明在斷路時，機廂不會移動？
(g) 在安全電路內其他所有開關/接點，是否經測試證明在斷路時，機廂不會移動？
(h) 最遠距離接點（鎖或按鈕）的接地能否及時觸發緩衝器或
觸動斷路器？
(i) 是否有其他機電聯鎖
如有，請列明_____________________________________
(j) 在(i)提及的其他機電聯鎖是否全部運作正常？

4.2 機廂頂部的控制裝置
(a) 上升檢修速度_________米/秒
(b) 下降檢修速度_________米/秒

4.3 間距及越程
(a) 當對重裝置在完全受壓縮的緩衝器上，
升降機機箱在碰到障礙物前，仍能向上移動多遠？
(b) 當機廂在頂層平層時，機廂頂部和井道
頂底部之間的距離是多少？
(c) 將機廂停留在其完全受壓縮的緩衝器上時，是否有符合設計守
則的足夠空間？
(d) 機廂底部越程長度
(e) 對重裝置底部越程長度

4.4 門的測試
(a) 滑動門類型
(b) 門的操作方式
(c) 控門電路的電源
(d) 行程中點最大力度
(e) 升降機門的重開裝置功能是否正常運作？
(f) 升降機門是否符合適用的設計實務守則中相關條款的要求？

4.5 過流保護器

5. 過流保護器

6. 限速器的測試
6.1 機廂限速器
限速器類型__________________
裝置動作 標示 米/秒 米/秒
速度 測量所得 米/秒 米/秒

6.2 對重裝置限速器（如有裝設）
限速器類型__________________
裝置動作 標示 米/秒 米/秒
速度 測量所得 米/秒 米/秒

* 剃去不適用者
電動升降機的檢驗報告（適用於接管保養）

說明怎樣測試限速器:
*模板/自由下落/實際超速/其他（請註明）_______________

備注：以下測試應在機廂下降時進行，且要制動器在非制動狀態下打開而曳引機則繼續操作直至纜索打滑或鬆弛為止。

<table>
<thead>
<tr>
<th>7. 機廂安全鉗的測試</th>
</tr>
</thead>
</table>
| 7.1 漸進式類型 | *不適用 / 設有
 裝置動作 | 是 □ 否 □
 藉由速度________米/秒
 安全鉗是否夾緊及操作正常？
 請註明速度________米/秒
| 7.2 瞬時式類型 | *不適用 / 設有
 裝置動作 | 是 □ 否 □
 安全鉗是否夾緊及操作正常？
 請註明速度________米/秒
| 7.3 測試中的停止距離是多少？ | ________米

<table>
<thead>
<tr>
<th>8. 對重裝置安全鉗的測試</th>
</tr>
</thead>
</table>
| 8.1 漸進式類型 | *不適用 / 設有
 在機廂空載並以平層速度/檢修速度運行時啟動安全鉗,
 安全鉗是否夾緊及操作正常？
 請註明速度________米/秒
| 8.2 瞬時式類型 | *不適用 / 設有
 在機廂空載並以平層速度/檢修速度運行時啟動安全鉗,
 安全鉗是否夾緊及操作正常？
 請註明速度________米/秒
| 8.3 對重裝置 |
 緊急停車時，是否能自動回到原位？
 請註明速度________米/秒

<table>
<thead>
<tr>
<th>9. 機廂限速保護装置/功能測試</th>
</tr>
</thead>
</table>
| 9.1 限速器的測試 | 不適用 / 設有
 (a) 機廂限速器
 裝置動作 | 標示
 速度（上）/下 | 測量所得

<table>
<thead>
<tr>
<th>10. 機廂非預定移動</th>
</tr>
</thead>
</table>
| 10.1 機廂緩衝器 | (a) 機廂緩衝器是否正確安裝和垂直？
 是 □ 否 □
| 10.2 對重裝置緩衝器 | (b) 對重裝置緩衝器中是否已充滿足夠的油？
 是 □ 否 □
| 10.3 機廂緩衝器被壓盡後放回,是否能自動回到原位？ | (c) 機廂緩衝器被壓盡後放回，是否能自動回到原位？
 是 □ 否 □

<table>
<thead>
<tr>
<th>11. 緩衝器的測試</th>
</tr>
</thead>
</table>
| 11.1 機廂緩衝器 | (a) 機廂緩衝器是否正確安裝和垂直？
 是 □ 否 □
| 11.2 對重裝置緩衝器 | (b) 對重裝置緩衝器中是否已充滿足夠的油？
 是 □ 否 □
| 11.3 機廂緩衝器被壓盡後放回,是否能自動回到原位？ | (c) 機廂緩衝器被壓盡後放回，是否能自動回到原位？
 是 □ 否 □

<table>
<thead>
<tr>
<th>12. 牽引力的檢查</th>
</tr>
</thead>
</table>
| 12.1 空載機廂以額定速度向上時緊急停車，機廂是否能被制停？ | 是 □ 否 □
| 12.2 機廂在完全壓縮的緩衝器上,空載機廂是否可能由曳引機升起？ | 是 □ 否 □
| 12.3 牽引輪纜坑的磨損是否達到了製造商建議的更換標準？ | 是 □ 否 □

* 剪去不適用者
13. 緊急停車距離
空載機廂以額定速度向上運行時，在緊急停車情況下，其緊急停車距離是多少？ 米

14. 一般工程（升降機工程）
(a) 機廂內是否展示了最高載重量，且是否符合設計守則的相關規定？ 是 □ 否 □
(b) 消防升降機的操作是否正常？ 不適用 □ 是 □ 否 □
(c) 在機廂內是否展示了緊急指示？ 是 □ 否 □
(d) 緊急操作系統的運作是否正常？ 是 □ 否 □
(e) 緊急照明設施在機廂內及在機房內的運作是否正常？ 是 □ 否 □
(f) 有甚麼緊急警報系統？
 i. 警鐘 □ □ □
 ii. 對講機 □ □ □
 iii. *顯示燈 □ □ □
 iv. *警鐘及管理處、機房、機廂、大堂/井道底坑的運作是否正常？
 v. 管理處 □ □ □
 vi. 機房 □ □ □
 vii. 機廂 □ □ □
 viii. 大堂/井道底坑 □ □ □
 (g) 超載裝置的操作是否令人滿意？ 是 □ 否 □
 (h) 層站門鎖旁通操作是否正常？ 不適用 □ 是 □ 否 □
 (i) 防夾手指裝置操作是否正常？ 不適用 □ 是 □ 否 □
 (j) 有無機房升降機是否設有救援設備？ 不適用 □ 是 □ 否 □

15. 一般檢查（其他工程）
(a) 機廂內是否展示了足夠的燈光照明，以便進行保養工作？ 是 □ 否 □
(b) 升降機井道/底坑內是否有足夠的燈光照明，以便進行保養工作？ 是 □ 否 □
(c) 機廂的狀況是否令人滿意？ 是 □ 否 □
(d) 機廂內通風設施是否足夠？ 是 □ 否 □
(e) 機廂門或活板門是否裝有合適的鎖，以符合升降機及自動梯建築工程作業守則第3.15.3及3.15.4項的規定？ 是 □ 否 □
(f) 通往所有設備項目的安全通道，是否符合設計實務守則第一部分，以及升降機及自動梯建築工程作業守則的規定？ 若否，請說明詳情。 是 □ 否 □
(g) 井道緊急門（如有裝設）是否符合升降機及自動梯建築工程作業守則第3.2項的規定？ 不適用 □ 是 □ 否 □
(h) 提供獲得豁免（如有）的文件，以便參考。 不適用 □ 是 □ 否 □

16. 常見異常情況
(a) 在消防升降機層站門前是否裝上鐵閘或類似閘門，阻塞升機入口？ 是 □ 否 □
(b) 在消防升降機人口以外的其他升降機人口前面，是否裝上並無按《設計守則》規定附有聯鎖的閘門？ 是 □ 否 □
(c) 升降機安裝時所裝設的層站門是否被停止使用（即升降機不會停於這些層站）？ 是 □ 否 □
(d) 是否裝設有適當的層站門的鎖緊裝置（即當升降機機廂並非停於層站的開鎖區時，層站門可從層站一邊以手動方式打開）？ 是 □ 否 □
(e) 是否裝設有適當校用作確認層站門已有效鎖緊於關閉位置的安全掣，或該安全掣並非直接操作類型？ 是 □ 否 □
(f) 是否裝設有適當校用作確認層站門已處於關閉位置的安全掣，或該安全掣並非直接操作類型？ 是 □ 否 □
(g) 層站與機廂門板（開關時）的間隙是否過大，或層站和機廂門板及企柱之間的間隙過大？ 是 □ 否 □
(h) 是否發現層門或機廂的關閉時開關過大？ 是 □ 否 □
(i) 驅動機器的齒輪箱是否泄漏潤滑劑，影響升降機的安全運作？ 是 □ 否 □
(j) 懸吊纜索是否於非安全操作狀態（例如纜線嚴重生銹或銹蝕，斷支數量過多，或出現其他異常異常情況）？ 是 □ 否 □
(k) 是否裝設有適當校用作確認層站門已處於關閉位置的安全掣？ 是 □ 否 □
(l) 機房內升降機機械的可接觸的活動部分是否沒有防護，令他人受傷？ 是 □ 否 □
(m) 升降機機廂的機身或機廂吊架是否嚴重侵蝕或銹蝕的情況？ 是 □ 否 □
(n) 是否裝設有適當校用作確認層站門已處於關閉位置的安全掣？ 是 □ 否 □
(o) 超載感應裝置是否非故障保護類型？ 是 □ 否 □
17. 聲明

17.1 註冊升降機工程人員或註冊升降機工程師的聲明

本人謹此聲明，於__________年_______月_______日就此檢驗報告的項目進行檢驗，確認報告內的資料屬實。

<table>
<thead>
<tr>
<th>註冊升降機工程人員姓名及編號</th>
<th>簽署</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>註冊升降機工程師姓名及編號</th>
<th>簽署</th>
</tr>
</thead>
</table>

17.2 註冊升降機承辦商的聲明

□ 我們在此聲明，本報告中所述的檢查工作已經由我們的員工完成，並且升降機及其所有相關設備或機械被發現沒有明顯的缺陷並且處於安全操作狀態。我們同時發現有以下不影響升降機安全運作的欠妥/未完成保養項目。

□ 我們在此聲明本報告中所述的檢查工作已經由我們的員工完成，下表列出了可能影響升降機安全運作的欠妥/未完成保養項目。升降機在檢查工作後已暫停運行。

訪：請在適當的位置劃上剔號。

<table>
<thead>
<tr>
<th>項目</th>
<th>欠妥/未完成保養項目</th>
<th>影響升降機的安全運行？（是/否）</th>
<th>預計整改完成日期（dd / mm / yyyy）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

註：如果以上空間不足，請使用其他紙張。

* 剪去不適用者
EXAMINATION REPORT FOR ESCALATORS/ PASSENGER CONVEYORS (FOR TAKEOVER MAINTENANCE)

1. Description of Installation
 Location (Address) ________________________________
 Environment: *Outdoor/ Indoor Brand_____________ Model____________________
 Escalator No.__________ Escalator Location ID________ Date of Handover__________

2. Static Examination
 (a) Step
 Brand________________________ Model____________________
 Step Width__________________mm Step Depth__________________mm
 (b) Handrail
 Brand________________________ Model____________________
 Distance between Handrail Centrelines ________________mm
 (c) Are the comb plates and terminal guides adjusted properly? Yes ☐ No ☐
 (d) Has the brake(s) been examined and found to be in order? Yes ☐ No ☐
 (e) Is an auxiliary brake provided? N.A. ☐ Yes ☐ No ☐

3. Dynamic Tests
 (a) Has the operation brake been tested at no load down condition? Yes ☐ No ☐
 The stopping distance is ________________mm
 (b) Does the auxiliary brake operate properly? N.A. ☐ Yes ☐ No ☐
 (c) Does the overspeed device operate properly? N.A. ☐ Yes ☐ No ☐

4. Driving Motor Current Tests
 Driving Motor Manufacturer __________________________
 Voltage at Time of Test __________________________ Rated Power ________________
 Form of Overload Protection:
 ☐ 3-Phase circuit breaker
 ☐ Overload in each phase
 ☐ Others ____________

<table>
<thead>
<tr>
<th>Running Current (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>100</td>
</tr>
</tbody>
</table>

 Separate supply for machine compartment/ power socket? Yes ☐ No ☐

5. Clearance
 (a) Is the clearance between consecutive steps not exceeding 6mm? Yes ☐ No ☐
 (b) Is the clearance between step and adjacent skirting not exceeding 4mm? Yes ☐ No ☐
 (c) Is the total clearance between step and both skirting not exceeding 7mm? Yes ☐ No ☐
 (d) Is the clearance between the upper surface of the step and the root of the comb teeth not exceeding 4mm? Yes ☐ No ☐
 (e) Is the distance between the floor and the lower point of the handrail into the newel within the range of 0.1m to 0.25m? Yes ☐ No ☐

6. Insulation Resistance to Earth
 Power System: ________________MΩ Safety Circuit: ___________MΩ

7. Earthing
 (a) Are all metalwork enclosing conductors bonded to earth? Yes ☐ No ☐
 (b) Is the maximum continuity resistance to earth less than 0.5Ω? Yes ☐ No ☐

8. General (* Escalator/ Passenger Conveyor) Work
 Have the following items where fitted been checked for correct operation?
 (a) Emergency Stop Switches Yes ☐ No ☐
 (b) Broken Step Chain Device Yes ☐ No ☐
 (c) Broken Drive *Chain/ Belt Device N.A. ☐ Yes ☐ No ☐
 (d) Handrail Inlet Switch N.A. ☐ Yes ☐ No ☐
 (e) Non-reversal Device Yes ☐ No ☐
 (f) Complate Switch N.A. ☐ Yes ☐ No ☐
 (g) Operation Brake Yes ☐ No ☐
 (h) Step Sagging Device N.A. ☐ Yes ☐ No ☐
 (i) Skirt Panel Switch N.A. ☐ Yes ☐ No ☐
 (j) Phase Protection Device Yes ☐ No ☐
 (k) Overspeed Device N.A. ☐ Yes ☐ No ☐
 (l) Broken Handrail Device N.A. ☐ Yes ☐ No ☐
 (m) Auxiliary Brake N.A. ☐ Yes ☐ No ☐
 (n) Inspection Door and Trap Door N.A. ☐ Yes ☐ No ☐
 (o) Handrail Speed Monitoring N.A. ☐ Yes ☐ No ☐
 (p) Broken Step Chain Device Yes ☐ No ☐
 (q) Missing Step or Pallet Device N.A. ☐ Yes ☐ No ☐
 (r) Lifting of the Braking System Monitoring Device N.A. ☐ Yes ☐ No ☐

* Delete whichever is not applicable
EXAMINATION REPORT FOR ESCALATORS/ PASSENGER CONVEYORS (FOR TAKEOVER MAINTENANCE)

9. General (Other Works)
 (a) Have the following items been properly provided?
 i. Notices/pictographs for passengers Yes □ No □
 ii. Guards at adjacent building obstacles and criss-cross escalators N.A. □ Yes □ No □
 iii. Rigid guard adjacent to escalator handrail N.A. □ Yes □ No □
 iv. Notice on access door to machinery spaces N.A. □ Yes □ No □
 (b) Do the unrestricted landing areas comply with relevant clauses in applicable Design Code?
 (c) Does the clear height above *step/belt comply with relevant clauses in applicable Design Code?

10. Common Anomalies
 (a) Do the main drive chains of the escalator excessively worn out or unevenly elongated? N.A. □ Yes □ No □
 (b) Do the combplates at the upper or lower landing excessively worn out or two or more consecutive combplate teeth broken? Yes □ No □
 (c) Are deflector devices not provided to prevent nipping of passenger’s foot? Yes □ No □
 (d) Is there any excessive gap between two consecutive escalator steps or between the side of the escalator step and the skirting? Yes □ No □
 (e) Do the handrail of the escalator worn out or cracked? Yes □ No □
 (f) Is the roller shutter adjacent to the upper or lower landing of the escalator not provided with an interlocking device to automatically stop the operation of the escalator whenever the roller shutter is closed or started to close? N.A. □ Yes □ No □
 (g) Are obstruction guards of correct size not provided at floor intersection? N.A. □ Yes □ No □

11. Declaration
 11.1 Declaration by Registered Escalator Worker or Registered Escalator Engineer
 I declared that on ________________ the examination works as stated in this report had been done and the information in this examination report is an accurate record.

 11.2 Declaration by Registered Escalator Contractor
 □ We declared that the examination works as stated in this report had been done by our staff and the escalator and all its associated equipment or machinery were found to be free from obvious defects and in safe working order. Maintenance defect(s) not affecting safe operation of escalator had been identified as listed below.

 □ We declared that the examination works as stated in this report had been done by our staff. Maintenance defect(s) which may affect safe operation of escalator had been identified as listed below. The escalator was suspended from operation after examination works.
 Note: Please tick where appropriate.

<table>
<thead>
<tr>
<th>Item</th>
<th>Maintenance defect(s)</th>
<th>Affecting safe operation of escalator? (Y/N)</th>
<th>Anticipated rectification completion date (dd/mm/yyyy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Please use additional sheet(s) if the above spaces are not enough.

Name & Registration No. of Registered Escalator Contractor
Authorized Signature of Registered Escalator Contractor with Company Chop

Date

* Delete whichever is not applicable
自動梯/乘客輸送機的檢驗報告 (適用於接管保養)

1. 裝置詳情

<table>
<thead>
<tr>
<th>項目</th>
<th>資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>地點 (地址)</td>
<td></td>
</tr>
<tr>
<td>環境 * 室外 / 室內</td>
<td>製造商:</td>
</tr>
<tr>
<td>自動梯編號:</td>
<td>自動梯識別編號:</td>
</tr>
<tr>
<td>傾斜角度:</td>
<td>額定速度:</td>
</tr>
<tr>
<td>垂直提升高度:</td>
<td>載客量:</td>
</tr>
</tbody>
</table>

2. 靜態檢驗

(a) 梯級

<table>
<thead>
<tr>
<th>項目</th>
<th>資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>製造商:</td>
<td>型號:</td>
</tr>
<tr>
<td>梯級闊度:</td>
<td>梯級深度:</td>
</tr>
<tr>
<td>梯級高度:</td>
<td></td>
</tr>
</tbody>
</table>

(b) 扶手帶

<table>
<thead>
<tr>
<th>項目</th>
<th>資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>製造商:</td>
<td>型號:</td>
</tr>
<tr>
<td>扶手帶中心線之距離:</td>
<td></td>
</tr>
</tbody>
</table>

(c) 梳齒及終端導軌是否調校得宜？

是 □ 否 □

(d) 制動器是否經過檢查並證實操作正常？

是 □ 否 □

(e) 是否設有遙控監察設備？

是 □ 否 □

3. 動態測試

(a) 操作制動器是否已經在空載下行的情況下作測試？

是 □ 否 □

(b) 輔助制動器是否運作正常？

不適用 □ 是 □ 否 □

(c) 限速裝置是否運作正常？

不適用 □ 是 □ 否 □

4. 驅動電動機的電流測試

<table>
<thead>
<tr>
<th>項目</th>
<th>資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>驅動電動機製造商:</td>
<td>預定功率:</td>
</tr>
<tr>
<td>測試時電壓:</td>
<td></td>
</tr>
</tbody>
</table>

5. 階梯

(a) 梯級之間的間隔是否不超過 6 毫米？

是 □ 否 □

(b) 梯級與踏板之間的間隔是否不超過 4 毫米？

是 □ 否 □

(c) 梯級與兩邊踏板之間的間隔是否不超過 7 毫米？

是 □ 否 □

(d) 地板與進入彎端的扶手帶低位的距離,是否在 0.1 米至 0.25 米之內？

是 □ 否 □

6. 對地絕緣電阻值

電力系統:	安全電路:

7. 接地

(a) 所有電線槽的金屬外殼是否已接地？

是 □ 否 □

(b) 對地最高電阻是否少於 0.5 欧？

是 □ 否 □

8. 一般檢查 (*自動梯/乘客輸送機工程*)

下列已裝配的裝置,是否經檢查以確定運作正常？

(a) 緊急制動開關掣

是 □ 否 □

(b) 斷梯級鍵裝置

是 □ 否 □

(c) 梳齒及端點裝置

是 □ 否 □

(d) 制動器

是 □ 否 □

(e) 防逆轉裝置

是 □ 否 □

(f) 梳齒板開關

是 □ 否 □

(g) 梳齒板開關

是 □ 否 □

(h) 梳齒板開關

是 □ 否 □

(i) 相位保護裝置

是 □ 否 □

(j) 限速裝置

是 □ 否 □

(k) 防護罩裝置

是 □ 否 □

(l) 電梯監視裝置

是 □ 否 □

(m) 電梯監視裝置

是 □ 否 □

(n) 電梯監視裝置

是 □ 否 □

(o) 電梯監視裝置

是 □ 否 □

(p) 電梯監視裝置

是 □ 否 □

(q) 電梯監視裝置

是 □ 否 □

(r) 電梯監視裝置

是 □ 否 □
自動梯/乘客輸送機的檢驗報告（適用於接管保養）

9. 一般檢查 (其他工程)
 (a) 是否已妥善提供以下項目?
 i. 為乘客而設的告示/圖像 是 □ 否 □
 ii. 因相鄰建築物所做成的障礙及交叉自動梯而設的防護擋板 不適用 □ 是 □ 否 □
 iii. 自動扶手帶旁的堅固圍欄 不適用 □ 是 □ 否 □
 iv. 機房門上的告示 不適用 □ 是 □ 否 □
 (b) 層站無障礙區域是否符合設計守則中的相關條款? 是 □ 否 □
 (c) 梯級/運輸帶上的淨高度是否符合設計守則中的相關條款? 是 □ 否 □

10. 常見異常情況
 (a) 自動梯的主要驅動鏈是否嚴重損耗或不規則地拉長？ 不適用 □ 是 □ 否 □
 (b) 上層站及下層站的梳齒板是否嚴重損耗，或兩個或以上的相鄰梳齒腳斷裂？ 是 □ 否 □
 (c) 是否沒有提供防止乘客腳部被夾的偏轉裝置？ 是 □ 否 □
 (d) 兩個梯級之間的間隙是否過大，或梯級邊緣與裙板的間隙過大？ 是 □ 否 □
 (e) 自動梯的扶手是否嚴重損耗或破裂？ 是 □ 否 □
 (f) 與自動梯上層站或下層站相鄰的捲閘，是否沒有安裝可在捲閘關閉或開始關閉時令自動梯自動停止運作的聯鎖裝置？ 不適用 □ 是 □ 否 □
 (g) 防護擋板的尺寸是否不正確，或沒有在樓板交界處安裝防護擋板？ 不適用 □ 是 □ 否 □

11. 聲明
 11.1 註冊自動梯工程人員或註冊自動梯工程師的聲明
 本人謹此聲明，於_________年_______月_______日就被此檢驗報告的項目進行檢驗，確認報告內的資料屬實。

 ___________________________ ___________________________
 註冊自動梯工程人員
 姓名及編號
 ___________________________ ___________________________
 註冊自動梯工程師
 姓名及編號
 ___________________________ ___________________________
 註冊自動梯承辦商
 證名及編號

 註冊自動梯承辦商的
 授權簽署及公司印章

 註冊自動梯承辦商的
 授權簽署及公司印章
 日期

11.2 註冊自動梯承辦商的聲明
 □ 我們在此聲明，本報告中所述的檢查工作已經由我們的員工完成，並且*自動梯/乘客輸送機及其所有相關設備或機械被發現沒有明顯的缺陷並且處於安全操作狀態。我們同時發現有以下不影響*自動梯/乘客輸送機安全運作的欠妥/未完成保養項目。

 □ 我們在此聲明本報告中所述的檢查工作已經由我們的員工完成，下表列出了可能影響*自動梯/乘客輸送機安全運作的欠妥/未完成保養項目。*自動梯/乘客輸送機在檢查工作後已暫停運行。

 註：請在適當的位置劃上剔號。

<table>
<thead>
<tr>
<th>項目</th>
<th>欠妥/未完成保養項目</th>
<th>影響自動梯的安全運行？（是/否）</th>
<th>預計的整改完成日期（dd / mm / yyyy）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

註：如果以上空間不足，請使用其他紙張。

______________________________ ______________________________
註冊自動梯承辦商
名稱及編號
______________________________ ______________________________
註冊自動梯承辦商
名稱及編號

授權簽署及公司印章

日期

* 刪去不適用者
EXAMINATION REPORT FOR HYDRAULIC LIFTS (FOR TAKEOVER MAINTENANCE)

1. Basic Information and Description of Installation

<table>
<thead>
<tr>
<th>Location (Address)</th>
<th>Lift No.</th>
<th>Lift Location ID</th>
<th>Date of Handover</th>
<th>Brand</th>
<th>Model</th>
<th>Length of Travel</th>
<th>Passenger Lift</th>
<th>Freight Lift</th>
<th>Vehicle Lift</th>
<th>Platform Lift</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Dia. of Ram</th>
<th>Ram Action: *Direct/ Indirect</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Landings Served under Fireman Mode</th>
<th>Landings Served</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Rated Load</th>
<th>Person</th>
<th>Rated Speed</th>
<th>m/s</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Dia. of Ram</th>
<th>m</th>
<th>Ram Action: *Direct/ Indirect</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Type of Ram:</th>
<th>Single/ Telescopic</th>
<th>Control Type:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Power Supply at Time of Test</th>
<th>Volts</th>
<th>Phase</th>
<th>Hz</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Levelling tolerance</th>
<th>mm</th>
<th>Car Floor Area</th>
<th>m²</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Machine Room Location:</th>
<th>*above lift well/ below lift well/ at side/ others</th>
</tr>
</thead>
</table>

2. Static Examination – Mechanical

2.1 Jack

- **Single Jack** []
- **Multi Jack** []

Number of Jacks

2.2 Suspension

- **Suspension Ropes**
 - Number: []
 - Nominal Diameter: []

Have the suspension ropes attained the criteria for replacement in accordance with Clause 5.4.8 of the Works Code? []

- **Type of Anchorage:**
 - Car: []
 - Counterweight (if provided): []

Devices provided against free fall and descent with excessive speed of the car:

- **Safety gear tripped by overspeed governor** []
- **Safety gear tripped by failure of suspension gear or by safety rope** []
- **Rupture valve** []
- **Restricter** []

Devices/ systems provided against creeping of the car:

- **Safety gear tripped by downward movement of the car** []
- **Pawl device** []
- **Clamping device** []
- **Electrical anti-creep system** []

2.3 Suspension Chain

- **Number** []
- **Pitch** [] mm

2.4 Safety Gear

- **Car side:**
 - **Brand** []
 - **Model** []

- **Counterweight side, if fitted:**
 - **Brand** []
 - **Model** []

2.5 Energy Dissipation Buffer

- **Car side:**
 - **Brand** []
 - **Model** []

- **Counterweight side, if fitted:**
 - **Brand** []
 - **Model** []

2.6 Energy Accumulation Buffer

- **Car side:**
 - **Brand** []
 - **Model** []

- **Counterweight side, if fitted:**
 - **Brand** []
 - **Model** []

- **Is/ Are the buffer switch(es) functioning properly?** []

2.7 Overspeed Governor

- **Car side:**
 - **Brand** []
 - **Model** []

- **Counterweight side, if fitted:**
 - **Brand** []
 - **Model** []

- **Governor Rope Nominal Diameter:** [] mm

2.8 Door Locking Device

- **Landing:**
 - **Brand** []
 - **Model** []

- **Car (1):**
 - **Brand** []
 - **Model** []

- **Car (2):**
 - **Brand** []
 - **Model** []

2.9 Rupture Valve/ One-way Restrictor

- **Brand** []

3. Static Examination – Electrical

3.1 Insulation Resistance to Earth

- **Pump Motor** [] MΩ
- **Power System** [] MΩ

- **Safety Circuits** [] MΩ

3.2 Earthing

- **Is the maximum continuity resistance to earth less than 0.5Ω?** []
- **Is the car connected to controller earthing terminal by a separate Conductor with proper sizing?** []

3.3 Protection of Conductors

- **Is the fixed wiring in conduit or trunking (or fittings which ensure**

* Delete whichever is not applicable
EXAMINATION REPORT FOR HYDRAULIC LIFTS (FOR TAKEOVER MAINTENANCE)

3.4 Phase Reversal and Phase Failure Devices
Do the phase reversal and phase failure devices operate/ function correctly?

4. Dynamic Tests
4.1 Safety Contacts/Circuits
(a) Have the contacts at each landing entrance been proved to ensure that when broken there is no movement of the car?

(b) Have the mechanical locks at each landing entrance been proved for positive locking?

(c) Have the car door/gate contacts been proved so that when broken there is no movement of the car?

(d) If separate terminal stopping switches are fitted, do they operate satisfactorily?

(e) Do the final limit switches cut off the lift supply before the car or counterweight contact the buffers?

(f) Have the stopping devices on the car top, in the pulley room and pit, been proved so that when broken no movement of the car occurs?

(g) Have all other switches/contacts in the safety circuit been proved so that when broken no movement of the car occurs?

(h) Does the earthing of the most remote contact (lock or push button) operate a fuse or trip a breaker without delay?

(i) Other electromechanical interlocks? If yes, please specify

(j) Are the interlocks mentioned in (i) working properly?

4.2 Car Top Control Station
(a) Speed Up ___________m/s

(b) Speed Down ___________m/s

4.3 Clearances and Runby
(a) Will the car and counterweight (if fitted) clear all obstacles when driven at slow speed:
 (i) with the car and rated load compressing the car buffers?
 (ii) with the counterweight (if fitted) compressing its buffer (car empty)?
 (iii) with the ram fully extended to the ram stop?

(b) What is the distance between the car roof and the lowest parts of roof of the lift well, when the car levels with top floor?

(c) With the car resting on its fully compressed buffers, is there a sufficient space to accommodate the rectangular block as specified in relevant clauses in applicable Design Code with at least 0.5m between the bottom of the pit and the lowest point of the car?

(d) Distance of bottom runby of car ___________mm

(e) Distance of bottom runby of counterweight, if fitted ___________mm

4.4 Door Test
(a) Type of sliding door *Horizontal / Vertical / Swing/ Collapsible

(b) Form of operation of door *

(c) Power supply to door control circuit ___________V

(d) Maximum force at the mid-point of the travel _________N

(e) Does the function of the door re-opening device work properly?

(f) Do the car doors fulfil the requirements of relevant clauses in applicable Design

5. Measurements of the Hydraulic and Electrical System
Note: 1 bar = 10^5 N/m^2 = 10^5 Pa

(a) When subject to 200% of full load pressure applied between the non-return valve and the jack (included) for a period of 5 minutes, is there evidence of any pressure drop or leakage of hydraulic fluid?

(b) Current and Speed Tests (at mid-point of travel)

<table>
<thead>
<tr>
<th>Hydraulic pressure (See Note 1)</th>
<th>Lift Speed (See note 2)</th>
<th>Motor Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Load Up</td>
<td>bar</td>
<td>m/s</td>
</tr>
</tbody>
</table>

Note 1- The pressure readings should be taken between the check valves, or down direction valve, and the supply line to the cylinder.

Note 2- The motor current readings on conductors adjacent to the motor terminal block should be taken with the motor running steadily.

(c) Pressure relief valve operated at pressure of ___________bar and is the integrity of the pipework satisfactory?

(d) Is the relief valve secured against any unauthorized interference?

(e) Does the check valve function correctly?

(f) Does the rupture valve function correctly?

(g) Does the operation of the manual lowering valve lower the car at a slow speed not exceeding 0.3m/s?

* Delete whichever is not applicable
EXAMINATION REPORT FOR HYDRAULIC LIFTS (FOR TAKEOVER MAINTENANCE)

(h) In the case of an indirect operation of the lift until pressure is re-established by the re-setting of the switch? N.A. □ Yes □ No □
(i) Are precautions against overheating of the fluid provided? Yes □ No □

6. Overspeed Governor/ Safety Rope/ Suspension Gear Tests
6.1 (a) Car Governor
Governor Type *N.A. / Fitted
<table>
<thead>
<tr>
<th>Device Tripping</th>
<th>Electrical</th>
<th>Mechanical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marked</td>
<td>m/s</td>
<td>m/s</td>
</tr>
<tr>
<td>Speed</td>
<td>Measured</td>
<td>m/s</td>
</tr>
</tbody>
</table>

State how the governor on the installation was tested:
*Simulation / Free Fall / Actual Overspeed / Others (Specified) _______________

6.1 (b) Counterweight Governor (if fitted)
Governor Type *N.A. / Fitted
<table>
<thead>
<tr>
<th>Device Tripping</th>
<th>Electrical</th>
<th>Mechanical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marked</td>
<td>m/s</td>
<td>m/s</td>
</tr>
<tr>
<td>Speed</td>
<td>Measured</td>
<td>m/s</td>
</tr>
</tbody>
</table>

State how the governor on the installation was tested:
*Simulation / Free Fall / Actual Overspeed / Others (please specify) _______________

6.2 Safety Rope
If the safety gear*/ clamping device* is tripped by a safety rope, does the triggering mechanism operate satisfactorily? N.A. □ Yes □ No □

6.3 Suspension Gear
If the safety gear*/ clamping device* is tripped by the failure of suspension gear, does the triggering mechanism operate satisfactorily? N.A. □ Yes □ No □

Note: The following tests should be conducted with the car descending in inspection speed.

7. Car Safety Gear Tests
7.1 Progressive Type
Does the safety gear operate correctly when engaging at levelling or inspection speed with car empty? Yes □ No □
State the speed __________m/s

7.2 Instantaneous Type
Does the safety gear operate correctly when engaging at levelling or inspection speed with car empty? Yes □ No □
State the speed __________m/s

7.3 What was the stopping distance in the test? __________m

8. Counterweight Safety Gear Tests and Counterweight Inspection
Note: The following tests should be conducted with the counterweight descending.
8.1 Progressive Type
Does the safety gear operate correctly when engaging at levelling or inspection speed with the car empty? Yes □ No □
State the speed __________m/s

8.2 Instantaneous Type
Does the safety gear operate correctly when engaging at levelling or inspection speed with the car empty? Yes □ No □
State the speed __________m/s

Note: The following inspection (8.3) is carried out after all dynamic tests have been completed.
8.3 Counterweight
Are there any visual defects on the whole counterweight including frame, filler weights, brackets and their fixings? Yes □ No □

9. Clamping Tests
(a) Progress Type
Does the clamping device operate correctly when engaging with the car empty? Yes □ No □

(b) Instantaneous Type
Does the clamping device operate correctly when engaging with the car empty? *N.A. / Fitted

10. Buffer Checks
10.1 For Car Buffers
(a) Is/ Are the car buffer(s) installed and aligned properly? Yes □ No □
(b) Is/ Are the car buffer(s) filled with sufficient buffer oil? N.A. □ Yes □ No □
(c) Does/ Do the car buffer(s) recover automatically after operation? N.A. □ Yes □ No □

10.2 For Counterweight Buffers
(a) Is/ Are the counterweight buffer(s) installed and aligned properly? Yes □ No □
(b) Is/ Are the counterweight buffer(s) filled with sufficient buffer oil? N.A. □ Yes □ No □
(c) Does/ Do the counterweight buffer(s) recover automatically after operation? N.A. □ Yes □ No □

11. Anti-Creep
Does the anti-creep device operate in accordance with conditions stipulated in relevant clauses in applicable Design Code? N.A. □ Yes □ No □

* Delete whichever is not applicable
12. General (Lift Works)

(a)	Is the maximum load indicated in the car and does it comply?	Yes □ No □
(b)	with relevant clauses in applicable Design Code?	Yes □ No □
(c)	Does the fireman’s lift operation function correctly?	N.A. □ Yes □ No □
(d)	Are the emergency instructions displayed in the machine room?	Yes □ No □
(e)	Does the emergency operation system function correctly?	Yes □ No □
(f)	Does the emergency lighting of □ the car and □ machine room function correctly?	Yes □ No □
(g)	What are the emergency alarm devices?	□
(h)	Does the overload device operate satisfactorily?	Yes □ No □
(i)	Does the bridging device function correctly?	N.A. □ Yes □ No □
(j)	Does the anti-finger trapping device function correctly?	N.A. □ Yes □ No □

13. General (Other works)

(a)	Is the machine room artificial lighting adequate for maintenance purposes?	Yes □ No □
(b)	Is the artificial lighting in the lift well or lift pit adequate for maintenance purposes?	Yes □ No □
(c)	Are the machine room conditions satisfactory?	Yes □ No □
(d)	Are the provisions for ventilating the machine room adequate?	Yes □ No □
(e)	Are the machine room doors or trap doors fitted with a suitable lock to comply with Clause 3.15.3 and Clause 3.15.4 of the CoP on Building Works for Lifts and Escalators?	Yes □ No □
(f)	Are the safety means of access to all items of equipment in accordance with relevant clauses in applicable Design Code and the CoP on Building Works for Lifts and Escalators?	Yes □ No □
(g)	Are the hoistway emergency doors (if fitted), in compliance with Clause 3.2 of the CoP on Building Works for Lifts and Escalators?	N.A. □ Yes □ No □
(h)	Documents (copy only) in respect of exemptions (if any) shall be provided for reference.	N.A. □ Yes □ No □
(i)	Are CCTV camera provided in lift car and CCTV monitors provided in management office* and machine room*?	N.A. □ Yes □ No □

14. Common Anomalies

(a)	Are metal gates or the like installed in front of landing doors of a Firemen’s lift blocking the entrances?	N.A. □ Yes □ No □
(b)	Are metal gates installed in front of the entrances of a lift, other than a firemen’s lift, not provided with the interlock in compliance with the applicable Design Code?	N.A. □ Yes □ No □
(c)	Have any landing doors provided at the time of installation of lift been disabled (i.e. such landings are not served by the lift).	N.A. □ Yes □ No □
(d)	Are the landing door locking device not properly adjusted (i.e. the landing door could be opened manually from the landing side when the lift car was not at the unlocking zone of that landing)?	Yes □ No □
(e)	Are the safety switches for proving the effective locking of the landing door in the closed position not properly adjusted or not of the positively operated type?	Yes □ No □
(f)	Are the safety switch for proving the closed position of the landing door not properly adjusted or of the positively operated type?	N.A. □ Yes □ No □
(g)	Is there any excessive clearance between the landing and car door panels (when closed) or between the landing and car door panel and the upright?	Yes □ No □
(h)	Is excessive closing force or kinetic energy of the landing doors or car doors found?	N.A. □ Yes □ No □
(i)	Is hydraulic fluid leaked from the tank or hydraulic equipment (e.g. jack/ pipes etc) affecting the safe operation of the lift?	N.A. □ Yes □ No □
(j)	Are the suspension wire ropes/ chains not in safe working order (such as serious rusting or corrosion, excessive breakage of wires or other serious abnormalities)?	N.A. □ Yes □ No □
(k)	Is the accessible moving part of the lift machinery inside the machine room not protected against injury to persons?	N.A. □ Yes □ No □
(l)	Is the lift car body or the car sling seriously corroded or rusted?	Yes □ No □
(m)	Is the guard rail on lift car top not properly installed?	N.A. □ Yes □ No □
(n)	Is the overload sensing device not of a fail-safe type?	Yes □ No □

* Delete whichever is not applicable
EXAMINATION REPORT FOR HYDRAULIC LIFTS (FOR TAKEOVER MAINTENANCE)

15. Declaration

15.1 Declaration by Registered Lift Worker or Registered Lift Engineer

I declared that on ________________ the examination works as stated in this report had been done and the information in this examination report is an accurate record.

Name & Registration No. of Registered Lift Worker

Signature

Name & Registration No. of Registered Lift Engineer

Signature

Date

15.2 Declaration by Registered Lift Contractor (Please tick where appropriate)

☐ We declared that the examination works as stated in this report had been done by our staff and the lift and all its associated equipment or machinery were found to be free from obvious defects and in safe working order. Maintenance defect(s) not affecting safe operation of lift had been identified as listed below.

☐ We declared that the examination works as stated in this report had been done by our staff. Maintenance defect(s) which may affect safe operation of lift had been identified as listed below. The lift was suspended from operation after examination works.

<table>
<thead>
<tr>
<th>Item</th>
<th>Maintenance defect(s)</th>
<th>Affecting safe operation of lift? (Y/N)</th>
<th>Anticipated rectification completion date (dd/mm/yyyy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Please use additional sheet(s) if the above spaces are not enough.

* Delete whichever is not applicable
液壓升降機檢查報告（適用於接管保養）

1. 裝置詳情

1.1 地址:

(以下為升降機詳細資料)

升降機編號: __________ 升降機識別編號: __________ 交機日期: __________

製造商: __________ 型號: __________ 行程距離: __________ 米

載客升降機 □ 載貨升降機 □ 汽車升降機 □ 平台升降機 □

1.2 服務樓層:

服務層數: __________// __________ 千克 __________// __________ 人

額定負載: __________// __________ 米/秒

柱塞直徑: __________毫米 柱塞動作: 直接 間接

柱塞類型: 單一式 旋轉式 控制類型: __________

測試時電源: __________伏特 機型: __________ 械

防除機廂蠕動的裝置:

() 電動防止蠕動系統 () 夾緊裝置

() 棘爪裝置 () 節流器 () 限速截止閥

借助懸吊組件失效或借助安全纜索來動作安全鉗:

() 借助限速器來動作的安全鉗

2.1 機廂:

() 單一千斤頂 () 多個千斤頂 () 千斤頂數量: __________

2.2 懸吊工具:

() 懸吊纜索

數量: __________ 型號: __________ 標稱直徑: __________ 毫米

懸吊纜索是否已經達到工程守則第 5.4.8 項所規定的更換標準?

是 □ 否 □

2.3 懸吊鍵

() 數量: __________ 型號: __________ 標稱直徑: __________ 毫米

() 類型和構造: __________

2.4 安全鉗

() 製造商: __________ 型號: __________

對於重裝置，如有:

() 製造商: __________ 型號: __________

數量: __________

() 懸吊纜索是否已經達到工程守則第 5.4.8 項所規定的更換標準?

是 □ 否 □

2.5 燃能式緩衝器:

() 貨廂:

() 對重裝置:

數量: __________

2.6 蓄能式緩衝器:

() 貨廂:

() 對重裝置:

數量: __________

2.7 限速器

() 貨廂:

() 對重裝置:

標稱直徑: __________ 毫米

2.8 門鎖裝置:

() 貨廂:

() 對重裝置:

標稱直徑: __________

2.9 限速截止閥/節流器

() 貨廂:

() 對重裝置:

標稱直徑: __________

3. 靜態檢驗 - 電氣

3.1 對地絕緣電阻值

() 載動電動機: __________兆歐 () 電力系統: __________兆歐

() 安全電路: __________兆歐

3.2 接地

() 對地最高連接性電阻，是否低於 0.5 兆　是 □ 否 □

() 機廂是否由一獨立的導體以適當的尺寸連接到控制器的接地終端？

是 □ 否 □
3.3 導體的保護
固定的佈線是否全部在導管或線槽（或其他確保具
同樣保護效能的配件）內？
3.4 反相及斷相保護裝置
反相及斷相保護裝置是否操作正常？

4. 動態測試
4.1 安全接點/電路
(a) 每個層站人口的接點是否經測試證明在斷路時，機廂不
會移動？
(b) 每個層站人口的機械鎖是否經測試證明，可肯定鎖緊？
(c) 機廂門接點是否經測試證明而在斷路時，機廂不會移動？
(d) 如果裝置了離岸終端制動開關掣，開關掣的運作是否符合要求？
(e) 在機廂或對重接觸緩衝器之前，最終限位開關是否能切
斷電動機的電源？
(f) 在機廂頂部、滑輪房和井道底坑的緊急停止開關，是否經
測試證明在斷路時，機廂不會移動？
(g) 在其他所有開關/接點，是否經測試證明在斷路時，機廂不會移動？
(h) 最遠距離接點（鎖或按鈕）的接地能否及時觸發熔斷器或
觸動斷路器？
(i) 是否有其他機電聯鎖
如有，請列明：________________________
(j) 在(0)提到的其他機電聯鎖是否全部運作正常？

4.2 機廂頂部的控制裝置
(a) 上升電機裝載速度：________米/秒
(b) 下降電機裝載速度：________米/秒

4.3 間距及越程
(a) 機廂及對重装置（如有裝設）以慢速推進時，在下列情
況是否都不會碰到障礙物？
(i) 運行速度</i>
(ii) 當機廂連同額定負載擠壓緩衝器時，機廂空載
是否運作正常？
(iii) 當機廂在頂層平時，機廂頂部和井道
頂最低部分之間的距離是多少？
(c) 當機廂停留於其完全壓縮的緩衝器上時，機廂空載
是否運作正常？
(d) 機廂底部越程長度

4.4 門的測試
(a) 滑動門類型
(b) 門的操作形式
(c) 控制電路的電源
(d) 行程中點最大速度
(e) 門重開裝置的構造及操作是否符合規定？
(f) 機廂門是否符合設計守則的規定？

4.5 液壓及電氣系統的測量數據

5. 液壓及電氣系統的測量數據

| 註 1 | 巴 = 10^5 牛頓/平方米 = 10^5 帕斯卡 |
| 註 2 | 發電機穩定運作時記錄發電機接線座的導體的電流讀數。 |

4.6 電流和速度測試（在行程中點）

5.4.4 門的測試

6.1 限速器/安全纜索/懸掛裝置的測試

6.1 (a) 限速器

<table>
<thead>
<tr>
<th>電機</th>
<th>設有</th>
<th>電氣</th>
<th>機械</th>
</tr>
</thead>
</table>

6.1 (b) 限速器

<table>
<thead>
<tr>
<th>裝置動作</th>
<th>設備</th>
<th>電機</th>
<th>機械</th>
</tr>
</thead>
</table>

6.1 (c) 限速器

<table>
<thead>
<tr>
<th>裝置動作</th>
<th>設備</th>
<th>電機</th>
<th>機械</th>
</tr>
</thead>
</table>

8.1 裝置動作

* 則去不適用者
液壓升降機檢查報告（適用於接管保養）

6.1 (b) 對重裝置限速器（如有）

<table>
<thead>
<tr>
<th>限速器類型:</th>
<th>電氣</th>
<th>機械</th>
</tr>
</thead>
<tbody>
<tr>
<td>裝置動作</td>
<td>標示</td>
<td>米/秒</td>
</tr>
<tr>
<td>速度</td>
<td>測量所得</td>
<td>米/秒</td>
</tr>
</tbody>
</table>

說明怎樣在裝置上測試限速器:
*模擬/自由下墜/實際超速/其他（請註明）：______________

6.2 安全纜索
如果安全鉗* /夾緊裝置由安全纜索來帶動，觸發機制的運作是否令人滿意？

不適用 □ 是 □ 否 □

6.3 懸吊裝置
如果安全鉗* /夾緊裝置由懸吊裝置失效來帶動，觸發機制的運作是否令人滿意？

不適用 □ 是 □ 否 □

7. 機廂安全鉗測試

*不適用 / 設有

7.1 漸進式類型
在機廂空載並以平層速度/檢修速度運行時啟動安全鉗，安全鉗是否夾緊及操作正常？

請註明速度: ___________ 米/秒

是 □ 否 □

7.2 瞬時式類型
在機廂空載並以平層速度/檢修速度運行時啟動安全鉗，安全鉗是否夾緊及操作正常？

請註明速度: ___________ 米/秒

是 □ 否 □

7.3 進行測試時，停車距離是多少？

___________ 毫米

8. 對重裝置安全鉗測試及對重裝置檢查

*不適用 / 設有

8.1 漸進式類型
在機廂空載並以平層速度/檢修速度運行時啟動安全鉗，安全鉗是否夾緊及操作正常？

請註明速度: ___________ 米/秒

是 □ 否 □

8.2 瞬時式類型
在機廂空載並以平層速度/檢修速度運行時啟動安全鉗，安全鉗是否夾緊及操作正常？

請註明速度: ___________ 米/秒

是 □ 否 □

注意：在完成所有動態測試之後，進行以下檢查（第 8.3 項）。

8.3 對重裝置

整個對重裝置上，包括框架，對重磚，支架及其固定件，是否存在可見缺陷？

是 □ 否 □

9. 夾緊裝置的測試

(a) 漸進式類型

夾緊裝置在機廂空載情況下夾緊，是否操作正常？

是 □ 否 □

(b) 瞬時式類型

夾緊裝置在機廂空載情況下夾緊，是否操作正常？

是 □ 否 □

10. 緩衝器測試

10.1 機廂緩衝器

(a) 機廂緩衝器是否正確安裝和垂直？

是 □ 否 □

(b) 機廂緩衝器中是否已充滿足夠的油？

是 □ 否 □

(c) 機廂緩衝器被壓盡後放回，是否能自動回到原位？

是 □ 否 □

10.2 對重裝置緩衝器

*不適用 / 設有

(a) 對重裝置緩衝器是否正確安裝和垂直？

是 □ 否 □

(b) 對重裝置緩衝器中是否已充滿足夠的油？

是 □ 否 □

(c) 對重裝置緩衝器被壓盡後放回，是否能自動回到原位？

是 □ 否 □

11. 防止蠕動

防止蠕動裝置的運作是否符合設計守則的相關條款？

不適用 □ 是 □ 否 □

12. 一般檢查（升降機工程）

(a) 機廂內是否顯示了最高載重量，且是否符合設計守則的相關規定？

是 □ 否 □

(b) 消防升降機的操作是否正常？

不適用 □ 是 □ 否 □

(c) 在機房內是否顯示了緊急指示？

不適用 □ 是 □ 否 □

(d) 緊急操作系統的運作是否正常？

不適用 □ 是 □ 否 □

(e) 緊急警報裝置:

(ī) 警鐘* 是 □ 否 □

(ii) 對講機* 是 □ 否 □

(iii) 警燈* 是 □ 否 □

(iv) 警報訊息顯示牌及告示* 是 □ 否 □

(g) 超載裝置的操作是否令人滿意？

是 □ 否 □

* 剪去不適用者
液壓升降機檢查報告（適用於接管保養）

13. 一般檢查 (其他工程)

(a) 機房內是否有足夠的燈光照明，以便進行保養工作？
 是 □ 否 □

(b) 井道的人工照明設備是否足以進行保養？
 是 □ 否 □

(c) 機房的狀況是否令人滿意？
 是 □ 否 □

(d) 機房的通風設施是否足夠？
 是 □ 否 □

(e) 機房門的或活板門是否裝上合適的鎖，以符合升降機及自動梯建築工程作業守則第 3.15.3 及 3.15.4 項的規定？
 是 □ 否 □

(f) 通往所有設備項目的安全通道，是否符合設計實務守則以及升降機及自動梯建築工程作業守則的規定？
 是 □ 否 □

(g) 井道緊急門(如有裝設)是否符合升降機及自動梯建築工程作業守則第 3.2 項的規定？
 是 □ 否 □

(h) 是否裝設沒有妥善安裝升降機機廂頂的護欄？
 是 □ 否 □

(i) 是否在升降機機廂內設有閉路電視攝錄機，並在*管理處及機房設有閉路電視顯示器？
 是 □ 否 □

14. 常見問題

(a) 在消防升降機層站門前是否裝上鐵閘或類似閘門，阻塞升降機入口？
 是 □ 否 □

(b) 在消防升降機入口以外的其他升降機入口前面，是否裝上並無按《設計守則》規定附有聯鎖的鐵閘？
 是 □ 否 □

(c) 升降機安裝時所裝設的層站門是否被停止使用(即升降機不會停於這些層站)？
 是 □ 否 □

(d) 是否裝設沒有適當調校層站門的鎖緊裝置(即當升降機機廂並非停於層站的開鎖區時，層站門可從層站一邊以手動方式打開)？
 是 □ 否 □

(e) 是否裝設沒有適當校用作確證層站門已有效鎖緊於關閉位置的安全掣，或該安全掣並非直接操作類型？
 是 □ 否 □

(f) 是否裝設沒有適當校用作確證層站門已處於關閉位置的安全掣，或該安全掣並非直接操作類型？
 是 □ 否 □

(g) 層站與機廂門板(關閉時)的開閘及企柱之間的間隙過大，或層站和機廂門板及企柱之間的開閘過大？
 是 □ 否 □

(h) 是否發現層門或機廂的開閘時動能過大？
 是 □ 否 □

(i) 液壓機油有否從油箱或液壓元件(如千斤頂/喉管)中流出，而影響升降機的安全操作？
 是 □ 否 □

15. 聲明

15.1 註冊升降機工程人員或註冊升降機工程師的聲明

本人謹此聲明，於________年____月____日就此檢驗報告的項目進行檢驗，確認報告內的資料屬實。

______________________________ ____________
註冊升降機工程人員
姓名及編號

______________________________ ____________
註冊升降機工程師
姓名及編號

15.2 註冊升降機承辦商的聲明

□ 我們在此聲明，本報告中所述的檢查工作已經由我們的員工完成，並且升降機及其所有相關設備或機械被發現沒有明顯的缺陷並且處於安全操作狀態。我們同時發現有以下不影響升降機安全運作的欠妥/未完成保養項目。

□ 我們在此聲明本報告中所述的檢查工作已經由我們的員工完成，下表列出了可能影響升降機安全運作的欠妥/未完成保養項目。升降機在檢查工作後已暫停運行。

註：請在適當的位置劃上剔號。

* 剃去不適用者
液壓升降機檢查報告（適用於接管保養）

<table>
<thead>
<tr>
<th>項目</th>
<th>欠妥/未完成保養項目</th>
<th>影響升降機的安全運行？（是/否）</th>
<th>預計的整改完成日期（dd / mm / yyyy）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

詳注：如果以上空間不足，請使用其他紙張。

______________________________ ______________________________

註冊升降機承辦商的名稱及編號

註冊升降機承辦商的授權簽署及公司印章

日期

* 剪去不適用者
EXAMINATION REPORT FOR ELECTRIC SERVICE LIFTS (FOR TAKEOVER MAINTENANCE)

1. Basic Information and Description of Installation
 Location (Address)___
 Lift No.__________ Lift Location ID______________ Date of Handover____________ __
 Brand_______________ Model_________ ______ Length of Travel__________m
 Landings Served___
 Rated Load____________kg Rated Speed __________m/s
 Power Supply at Time of Test__________Volt __________ Phase __________Hz
 Car Floor Area_____________m2 Car Internal Height_____________m
 Machine Room Location: *above lift well / below lift well / at side
 Model No. and Name of Manufacturer of the Controller_________________________________

2. Static Examination – Mechanical
 2.1 Suspension
 (a) Suspension Ropes
 Number__________ Nominal Diameter__________mm
 Have the suspension ropes attained the criteria for replacement in accordance
 with Clause 5.4.8 of the Works Code? Yes □ No □
 (b) Type of Anchorages: Car________________ Counterweight________________
 Have the anchorages been examined and found in good working condition?
 Yes □ No □

 2.2 Safety Gear
 Car side: Brand________ Model____________
 Counterweight side, if fitted: Brand________ Model____________

 2.3 Energy Dissipation Buffer
 *N.A. / Fitted
 (a) Car side: Brand________ Model____________
 Counterweight side: Brand________ Model____________
 (b) Is/ Are the buffer switch(es) functioning properly? N.A. □ Yes □ No □

 2.4 Energy Accumulation Buffer
 *N.A. / Fitted
 (a) Car side: Brand________ Model____________
 Counterweight side: Brand________ Model____________
 (b) Is the buffer’s condition satisfactory? (e.g. free from crack/ rust) Yes □ No □

 2.5 Brake
 Does the brake stop the lift effectively, when empty car travelling upward in
 the upper part of its travel? Yes □ No □

 2.6 Overspeed Governor
 Car side: Brand________ Model____________
 Counterweight side: Brand________ Model____________

 2.7 Door Locking Device
 a) Landing: Brand________ Model____________

3. Static Examination – Electrical
 3.1 Insulation Resistance to Earth
 (a) Lift Motor__________MΩ (b) Power System__________MΩ
 (c) Safety Circuits__________MΩ

 3.2 Earthing
 Is the maximum continuity resistance to earth less than 0.5Ω Yes □ No □

4. Dynamic Tests
 Safety Contacts/Circuits
 (a) Have the contacts at each landing door been proved to ensure
 that when broken there is no movement of the car? Yes □ No □
 (b) Have the mechanical locks at each landing door been proved for
 positive locking? Yes □ No □
 (c) Have the car door/gate contacts been proved so that when broken
 there is no movement of the car? Yes □ No □
 (d) Do the terminal stopping switches operate satisfactorily? Yes □ No □
 (e) Do the stopping device in machine room and in pit operate
 correctly? Yes □ No □
 (f) Does the earthing of the most remote contact (lock or push
 button) operates a fuse or trip a breaker? Yes □ No □

5. Overspeed Governor Tests
 5.1 Car Governor
 Governor Type________________
 Governor Type________________ Electrical Mechanical
 Device Tripping Marked m/s m/s
 Speed Measured m/s m/s
 5.2 Counterweight Governor (if fitted)
 Governor Type________________
 Governor Type________________ Electrical Mechanical
 Device Tripping Marked m/s m/s
 Speed Measured m/s m/s

 State how the governor on the installation was tested:
 *Simulation / Free Fall / Actual Overspeed / Others (Specified) _______________

Note: The following tests should be conducted with the car descending in inspection speed
with the brake open and the machine continuing to run till the ropes slip or become slack.

* Delete whichever is not applicable
6. Car Safety Gear Tests

6.1 Progressive Type
Does the safety gear operate correctly when engaging at levelling or inspection speed with car empty?
Yes □ No □
State the speed_______m/s

6.2 Instantaneous Type
Does the safety gear operate correctly when engaging at levelling or inspection speed with car empty?
Yes □ No □
State the speed_______m/s

6.3 What was the stopping distance in the test?
_______m

7. Counterweight Safety Gear Tests and Counterweight Inspection
Note: The following tests should be conducted with the counterweight descending, with the brake open and the machine continuing to run till the ropes slip or become slack.

7.1 Progressive Type
Does the safety gear operate correctly when engaging at levelling or inspection speed with the car empty?
Yes □ No □
State the speed_______m/s

7.2 Instantaneous Type
Does the safety gear operate correctly when engaging at levelling or inspection speed with the car empty?
Yes □ No □
State the speed_______m/s

8. Buffer Checks

8.1 For Car Buffers
(a) Is/ Are the car buffer(s) installed and aligned properly? Yes □ No □
(b) Is/ Are the car buffer(s) filled with sufficient buffer oil? N.A. □ Yes □ No □
(c) Does/ Do the car buffer(s) recover automatically after operation? N.A. □ Yes □ No □

8.2 For Counterweight Buffers
(a) Is/ Are the counterweight buffer(s) installed and aligned properly? Yes □ No □
(b) Is/ Are the counterweight buffer(s) filled with sufficient buffer oil? N.A. □ Yes □ No □
(c) Does/ Do the counterweight buffer(s) recover automatically after operation? N.A. □ Yes □ No □

9. Traction Check

9.1 Does the car stop under emergency conditions with the car empty when travelling upwards at rated speed? Yes □ No □

9.2 With the counterweight resting on its fully compressed buffers, is it impossible for the empty car to be raised under power? Yes □ No □

9.3 The wear and tear of traction groove attained criteria for replacement according to manufacturer’s instruction? Yes □ No □

10. Emergency Stopping Distance
What was the stopping distance of the empty car traveling in up direction at rated speed under emergency stopping conditions? __________m

11. General

(a) Are the maximum load and warning notice displayed at each landing in compliance with relevant clauses in applicable Design Code? Yes □ No □
(b) Are the emergency instructions displayed in the machine room? Yes □ No □
(c) Is the machine room lighting adequate for maintenance purpose? Yes □ No □
(d) Are the provisions for ventilating the machine room adequate? Yes □ No □
(e) Is each machine room door or trap door complied with the CoP on Building Works for Lifts and Escalators? Yes □ No □
(f) Is the clear space in front of the controller not less than 900mm in depth? Yes □ No □
 If no, state details___________________________
(g) Is the access to machine room and to all equipment safe and convenient? Yes □ No □
(h) Does the overload device operate satisfactorily? N.A. □ Yes □ No □

12. Declaration

12.1 Declaration by Registered Lift Worker or Registered Lift Engineer
I declared that on ______________ the examination works as stated in this report had been done and the information in this examination report is an accurate record.

______________________________ ________
Name & Registration No. of Signature
Registered Lift Worker
______________________________ ________
Name & Registration No. of Signature
Registered Lift Engineer

Date

* Delete whichever is not applicable
12.2 Declaration by Registered Lift Contractor

☐ We declared that the examination works as stated in this report had been done by our staff and the lift and all its associated equipment or machinery were found to be free from obvious defects and in safe working order. Maintenance defect(s) not affecting safe operation of lift had been identified as listed below.

☐ We declared that the examination works as stated in this report had been done by our staff. Maintenance defect(s) which may affect safe operation of lift had been identified as listed below. The lift was suspended from operation after examination works.

Note: Please tick where appropriate.

<table>
<thead>
<tr>
<th>Item</th>
<th>Maintenance defect(s)</th>
<th>Affecting safe operation of lift? (Y/N)</th>
<th>Anticipated rectification completion date (dd/mm/yyyy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Please use additional sheet(s) if the above spaces are not enough.

______________________________ ______________________________
Name & Registration No. of Authorized Signature of Registered
Registered Lift Contractor Lift Contractor with Company Chop

Date

* Delete whichever is not applicable
電動升降貨物升降機的檢驗報告（適用於接管保養）

1. 裝置詳情

<table>
<thead>
<tr>
<th>地點(地址)：</th>
<th>升降機編號：</th>
<th>升降機識別編號：</th>
<th>交接日期：</th>
</tr>
</thead>
<tbody>
<tr>
<td>製造商：</td>
<td>型號：</td>
<td>行程距離：</td>
<td>米</td>
</tr>
<tr>
<td>服務商：</td>
<td>千克</td>
<td>人</td>
<td>米/秒</td>
</tr>
<tr>
<td>機廂地板面積：</td>
<td>平方米</td>
<td>機廂內高度：</td>
<td>米</td>
</tr>
</tbody>
</table>

2. 懸吊工具

2.1 懸吊纜索

(a) 懸吊纜索數量：

(b) 懸吊纜索標稱直徑：

懸吊纜索是否已經達到工程實務守則第 5.4.8 項所規定的更換標準？

2.2 安全鉗

2.3 耗能式緩衝器

2.4 儲能式緩衝器

2.5 制動器

當空車在其行程的上部向上行以額定速度行駛時急停，

2.6 限速器

2.7 門鎖裝置

3. 靜態檢驗 – 電氣

3.1 對地絕緣電阻值

(a) 升降機發動機

(b) 電力系統

(c) 安全電路

3.2 接地

對地最高連續性電阻，是否低於 0.5 欧？

4. 動態測試

安全接點/電路

(a) 每個層站人口的接點是否經測試證明在斷路時，機廂不會移動？

(b) 每個層站人口的機械鎖是否經測試證明，可肯定鎖緊？

(c) 機廂門/隔接點是否經測試在斷路時，機廂不會移動？

(d) 如果裝置了獨立終端制動開關，開關掣的運作是否符合要求？

(e) 在機廂頂部，滑輪房和井道底坑的緊急停止開關，是否經測試證明在斷路時，機廂不會移動？

(f) 最遠距離接點（鎖或按鈕）的接地能否及時觸發熔斷器或觸動斷路器？

5. 限速器的測試

5.1 機廂限速器

5.2 對重裝置限速器（如有裝設）

6. 機廂安全鉗的測試

6.1 浮動式類型

備註：以下測試應在機廂下降時進行，且要制動器在非制動狀態下打開而曳引機則繼續操作直至纜索打滑或鬆弛為止。

* 剪去不適用者
電動送貨升降機的檢驗報告 (適用於接管保養)

6.2 電動送貨升降機的檢驗報告

6.3 測試中的停止距離是多少？

7. 對重裝置安全鉗的測試

7.1 漸進式類型

7.2 緊急停車距離

8. 緩衝器的測試

9. 制動力的檢查

10. 緊急停車距離

11. 一般檢查

12. 聲明

12.1 註冊升降機工程人員或註冊升降機工程師的聲明

12.2 註冊升降機承辦商的聲明

* 剪去不適用者
電動送貨升降機的檢驗報告 （適用於接管保養）

<table>
<thead>
<tr>
<th>項目</th>
<th>欠妥/未完成保養項目</th>
<th>影響升降機的安全運行？（是/否）</th>
<th>預計的整改完成日期（dd/mm/yyyy）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

註：如果以上空間不足，請使用其他紙張。

______________________________ __________________________________

註冊升降機承辦商的名稱及編號 註冊升降機承辦商的授權簽署及公司印章

_________________ 日期

3